Preparation and crystal structures of [SnCl₄(MeSCH₂SMe)] and [SnCl₄(MeSeCH₂SeMe)]: dithio- and diseleno-ether complexes incorporating highly strained four-membered chelate rings

Anthony R. J. Genge, William Levason and Gillian Reid

Department of Chemistry, University of Southampton, Highfield, Southampton, UK SO17 1BJ

The preparation and crystal structures of [SnCl₄(MeSCH₂SMe)] and [SnCl₄(MeSeCH₂SeMe)], the first examples showing bidentate chelation of these methylene bridged dithio- and diseleno-ethers, have been described.

We have been investigating the complexation of various Group 16 donor acyclic and macrocyclic ligands with d- and p-block ions.1-6 In the course of this work we recently showed that the single methylene-bridged thio- and seleno-ether ligands MeSCH₂SMe and MeSeCH₂SeMe react with Cu^I or Ag^I to yield highly unusual three-dimensional networks incorporating channels which can host PF_6^- or BF_4^- anions.² In these materials the ligands bridge adjacent tetrahedrally co-ordinated metal centres generating extended arrays, and we believe that the single methylene interdonor linkage leads to a preference for ligand bridging over chelation since the latter would give rise to a highly strained chelate ring. Although examples which involve η^1 co-ordination of these ligands are known (e.g. [ML₂Cl₂], M = Pd or Pt; $L = PhSCH_2SPh$, $MeSCH_2SMe$, $PhSeCH_2SePh$ or MeSeCH₂SeMe),³ these Cu^I and Ag^I species were the first examples of network polymers based on this type of ligand, and a database search revealed that there are no structurally characterised examples of methylene bridged dithio- or diseleno-ethers functioning as chelating ligands. In fact, there are only two compounds involving a chelating C1-linked ditelluroether, [{(4-MeOC₆H₄Te)₂CH₂}PdCl₂] and [{(4-MeO- $C_6H_4Te_2CH_2$ (Ph₂PCH₂CH₂PPh₂)Pd]^{2+.7} Here we describe the products derived from reaction of MeECH₂EMe (E = S, Se or Te) with SnCl₄ which to our surprise involve chelating MeSCH₂SMe and MeSeCH₂SeMe.

Reaction* of SnCl₄ with 1 molar equivalent of MeSCH₂SMe or MeSeCH₂SeMe in anhydrous CH₂Cl₂ affords white or yellow solids respectively. These products are extremely sensitive to moisture (more so than the other dithio- and diseleno-ether complexes of SnCl₄ which we have reported), fuming noticeably upon exposure to moist air. The IR spectra show strong broad peaks in the range 200–400 cm⁻¹ assigned to Sn–Cl stretching vibrations. This, together with microanalytical data, confirms the empirical formulations for the products as [SnCl₄-(MeSCH₂SMe)] and [SnCl₄(MeSeCH₂SeMe)] respectively.

Attempts to isolate the analogous telluroether complex $[SnCl_4(MeTeCH_2TeMe)]$ from the reaction of $SnCl_4$ with $MeTeCH_2TeMe$ were not successful.

In view of the highly unusual structural motifs identified for the Cu^I and Ag^I complexes with these ligands, it was essential to establish unequivocally the stereochemistry at Sn^{IV}. Single crystals of both complexes were obtained by slow evaporation from a solution of the appropriate complex in CH₂Cl₂.† Surprisingly, the single-crystal structure of [SnCl₄(MeSCH₂SMe)] shows (Fig. 1) a mononuclear Sn^{IV} species involving a highly distorted octahedral S₂Cl₄ donor set, with the dithioether ligand coordinated in a bidentate fashion to give a four-membered chelate ring, Sn-S(1) 2.710(2), Sn-S(2) 2.647(2), Sn-Cl(1) 2.402(2), Sn-Cl(2) 2.390(2), Sn-Cl(3) 2.343(2), Sn-Cl(4) 2.362(2) Å. The co-ordinated dithioether adopts the DL configuration, with the Me groups directed to opposite sides of the SnS₂Cl₂ plane. The S(1)-Sn-S(2) angle is 67.82(5)°, very significantly more acute than in the other chelating dithioether complexes of Sn^{IV} which we have studied, e.g. $84.2(4)^{\circ}$ in [SnCl₄{MeS(CH₂)₂SMe}].⁴ The structure of [SnCl₄(MeSeCH₂SeMe)] shows (Fig. 2) a very similar arrangement. This molecule possesses crystallographic

Crystal data for [SnCl₄(MeSCH₂SMe)]: M = 368.72, monoclinic, space group $P2_1/c$, a = 6.371(2), b = 13.456(4), c = 13.319(2) Å, $\beta = 100.30(2)^\circ$, U = 1123.4(4) Å³, Z = 4, $D_c = 2.180$ g cm⁻³, μ (Mo-Ka) = 35.32 cm⁻¹, F(000) = 704. Colourless block ($0.55 \times 0.40 \times 0.40$ mm), 2075 unique reflections ($R_{int} = 0.025$) of which 1656 with $F > 5\sigma(F)$ were used in all calculations. The structure was solved by direct methods.⁸ Iterative cycles of least-squares refinement and Fourier-difference synthesis on absorption corrected data (ψ scans) revealed the positions of all non-H atoms for one complete molecule in the asymmetric unit.⁹ All non-H atoms were refined with anisotropic thermal parameters and H atoms were included but not refined. At final convergence, R = 0.028, R' = 0.035, S = 1.98 for 91 parameters and the final ΔF synthesis showed $\Delta\rho$ in the range 0.65 to -1.17 e Å⁻³.

Crystal data for $[SnCl_4(MeSeCH_2SeMe)]$: M = 462.52, orthorhombic, space group *Pnma*, a = 11.839(1), b = 12.633(1), c = 7.634(2)Å, U = 1141.8(3) Å³, Z = 4, $D_c = 2.690$ g cm⁻³, μ (Mo-K α) = 94.87 cm⁻¹ F(000) = 848. Yellow block ($0.60 \times 0.40 \times 0.25$ mm), 1194 reflections of which 815 with $F > 5\sigma(F)$ were used in all calculations. The structure was solved using heavy-atom Patterson methods.¹⁰ Iterative cycles of least-squares refinement and Fourier-difference synthesis on absorption corrected data (ψ scans) revealed the positions of all non-H atoms for one half-molecule in the asymmetric unit, related to the other half by a crystallographic mirror plane.9 Anisotropic thermal parameters were refined for all non-H atoms except Cl(3) and C(2) for which unrealistic values were obtained (probably due to the ψ scans giving an imperfect absorption correction) and hence these were refined with isotropic thermal parameters. Hydrogen atoms were included but not refined. At final convergence, R = 0.041, R' = 0.053, S = 2.04 for 44 parameters and the final ΔF synthesis showed $\Delta \rho$ within the range 0.90 to -1.65 e Å⁻³. CCDC reference number 186/779.

^{*} The complexes were prepared using Schlenk techniques under a dry N_2 atmosphere by the same general method and this is detailed below for one example.

Compound [SnCl₄(MeSCH₂SMe)]: SnCl₄ (2 mmol) was added to a solution of the ligand (2 mmol) in anhydrous CH₂Cl₂ (10 cm³). Stirring at room temperature followed by concentration of the solution *in vacuo*, afforded a white precipitate which was collected by filtration and dried *in vacuo* (Found: C, 9.5; H, 2.4. C₃H₈Cl₄S₂Sn requires C, 9.8; H, 2.2%). v_{max}/cm^{-1} : 330 (br) (SnCl).

Compound [SnCl₄(MeSeCH₂SeMe)]: yellow solid (Found: C, 7.9; H, 2.0. C₃H₈Cl₄Se₂Sn requires C, 7.8; H, 1.7%). v_{max}/cm⁻¹: 326 (br) (SnCl).

[†] X-Ray crystallography. In each case the selected crystal was coated with mineral oil, mounted on a glass fibre and immediately placed under a stream of cold nitrogen. Data collection used a Rigaku AFC7S four-circle diffractometer equipped with an Oxford Systems cryostream operating at 150 K and graphite-monochromated Mo-Kα radiation (0.710 73 Å) using ω -2θ scans.

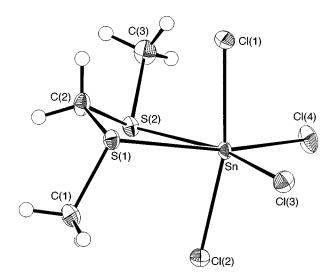


Fig. 1 View of the structure of $[SnCl_4(MeSCH_2SMe)]$ with numbering scheme adopted. Ellipsoids are shown at 40% probability. Selected bond lengths (Å) and angles (°): Sn–Cl(1) 2.402(2), Sn–Cl(2) 2.390(2), Sn–Cl(3) 2.343(2), Sn–Cl(4) 2.362(2), Sn–S(1) 2.710(2), Sn–S(2) 2.647(2); S(1)–Sn–S(2) 67.82(5), Cl(1)–Sn–Cl(2) 167.15(5), Cl(1)–Sn–S(1) 78.70(5), Cl(1)–Sn–S(2) 88.08(5), Cl(2)–Sn–S(1) 89.90(5), Cl(2)–Sn–S(2) 82.09(5), S(1)–C(2)–S(2) 111.1(3)

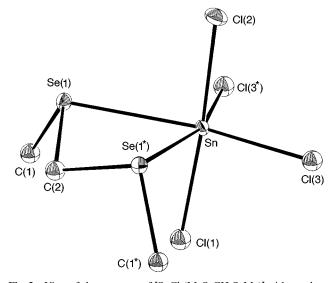


Fig. 2 View of the structure of $[SnCl_4(MeSeCH_2SeMe)]$ with numbering scheme adopted. Ellipsoids are shown at 40% probability. Selected bond lengths (Å) and angles (°): Sn–Cl(1) 2.406(4), Sn–Cl(2) 2.407(4), Sn–Cl(3) 2.376(3), Sn–Se(1) 2.782(1); Se(1)–Sn–Se(1*) 69.11(5), Cl(1)–Sn–Cl(2) 175.5(1), Se(1)–Sn–Cl(2) 88.75(8), Se(1)–Sn–Cl(1) 87.53(8), Se(1)–C(2)–Se(1*) 107.2(2)

m symmetry with Sn, Cl(1) and Cl(2) lying on the mirror plane. Again the compound incorporates a four-membered chelate ring, although in this case the Me substituents adopt the *meso* configuration, Sn–Se(1) 2.782(1), Sn–Cl(1) 2.406(4), Sn–Cl(2) 2.407(4), Sn–Cl(3) 2.376(3) Å. In this case the angle involved in the chelate ring is marginally larger, $69.11(5)^\circ$, a result of the Sn–Se bond lengths being longer than Sn–S, hence leading to a slightly less strained four-membered ring. The Sn–S and Sn–Se

bond lengths in these species are in accord with those in other thio- and seleno-ether complexes of Sn^{IV} , and the Sn–Cl bond lengths exhibit similar trends, with d(Sn–Cl) trans to S or Se being shorter than d(Sn–Cl) trans to Cl.⁴⁻⁶

Above 230 K no signal is observed in the ¹¹⁹Sn-{¹H} NMR spectrum (CD₂Cl₂) of [SnCl₄(MeSCH₂SMe)]. Below 230 K a broad resonance is observed which splits at 180 K giving two signals of approximately equal intensity at δ 585.3 and 585.7, indicating fast exchange and/or ring-opening at high temperature with the chelated species present in solution at low temperature as a mixture of *meso* and DL forms. Importantly, this suggests that chelation is not just a consequence of crystallisation. These resonances occur at similar chemical shifts to other [SnCl₄(L-L)] complexes, where L-L is a bidentate thioether.⁴ Variable-temperature ¹¹⁹Sn-{¹H} and ⁷⁷Se-{¹H} NMR spectroscopy over the range 180–300 K revealed no signal, suggesting that the selenoether complex [SnCl₄(MeSeCH₂SeMe)] is more labile than its thioether analogue in solution.

These complexes are the first structurally characterised examples incorporating chelating methylene-bridged dithio- or diseleno-ethers.

Acknowledgements

We thank the University of Southampton and the EPSRC for support and the latter for provision of a diffractometer. We also acknowledge the use of the Cambridge Structural Database implemented at CCLRC Daresbury Laboratory.

References

- For examples see, E. G. Hope and W. Levason, Coord. Chem. Rev., 1993, 122, 109; N. R. Champness, P. F. Kelly, W. Levason, G. Reid, A. M. Z. Slawin and D. J. Williams, Inorg. Chem., 1995, 34, 445; W. Levason, J. J. Quirk and G. Reid, J. Chem. Soc., Dalton Trans., 1996, 3713; W. Levason, J. J. Quirk, G. Reid and S. M. Smith, J. Chem. Soc., Dalton Trans., 1997, 3719; W. Levason, J. J. Quirk, G. Reid and C. S. Frampton, Inorg. Chem., 1994, 33, 614; W. Levason, G. Reid and S. M. Smith, Polyhedron, 1997, in the press; J. R. Black, N. R. Champness, W. Levason and G. Reid, J. Chem. Soc., Dalton Trans., 1995, 3439; J. R. Black, N. R. Champness, W. Levason and G. Reid, Inorg. Chem., 1996, 35, 1820.
- 2 J. R. Black, N. R. Champness, W. Levason and G. Reid, *Inorg. Chem.*, 1996, **35**, 4432.
- 3 A. F. Chiffey, J. Evans, W. Levason and M. Webster, J. Chem. Soc., Dalton Trans., 1994, 2835.
- 4 S. E. Dann, A. R. J. Genge, W. Levason and G. Reid, J. Chem. Soc., Dalton Trans., 1996, 4471.
- 5 S. E. Dann, A. R. J. Genge, W. Levason and G. Reid, J. Chem. Soc., Dalton Trans., 1997, 2207.
- 6 A. R. J. Genge, W. Levason and G. Reid, J. Chem. Soc., Dalton Trans., 1997, 4549.
- 7 J. E. Drake, J. Yang, A. Khalid, V. Srivastava and A. K. Singh, *Inorg. Chim. Acta*, 1997, **254**, 57.
- 8 G. M. Sheldrick, SHELXS 86, program for crystal structure solution, Acta Crystallogr., Sect. A, 1990, 46, 467.
- 9 TEXSAN, Crystal Structure Analysis Package, Molecular Structure Corporation, TX, 1992.
- 10 P. T. Beurskens, G. Admiraal, G. Beurskens, W. P. Bosman, S. Garcia-Granda, R. O. Gould, J. M. M. Smits and C. Smykalla, PATTY, The DIRDIF Program System, Technical Report of the Crystallography Laboratory, University of Nijmegen, 1992.

Received 23rd September 1997; Communication 7/06876J